首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   254篇
  免费   18篇
  国内免费   1篇
  2023年   7篇
  2022年   4篇
  2021年   19篇
  2020年   8篇
  2019年   12篇
  2018年   11篇
  2017年   9篇
  2016年   15篇
  2015年   20篇
  2014年   16篇
  2013年   20篇
  2012年   19篇
  2011年   24篇
  2010年   9篇
  2009年   6篇
  2008年   11篇
  2007年   6篇
  2006年   9篇
  2005年   4篇
  2004年   8篇
  2003年   11篇
  2002年   3篇
  1999年   4篇
  1998年   2篇
  1997年   2篇
  1995年   1篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1981年   1篇
  1969年   2篇
  1959年   3篇
  1955年   1篇
排序方式: 共有273条查询结果,搜索用时 15 毫秒
101.
Papaya ringspot virus-W (PRSV-W) and Tomato chlorotic spot virus (TCSV) are common viruses infecting vegetables in south Florida. Application of plant growth-promoting rhizobacteria (PGPR) has emerged as a potential alternative of chemical pesticides to control these viruses. But, it is not sufficient to completely replace chemical control. This study aimed to investigate the synergistic effect of chitosan and PGPR to control PRSV-W and TCSV. The efficiency of PGPR to suppress PRSV-W and TCSV was significantly improved when they were accompanied with chitosan treatment. The highest reduction in disease severity of both PRSV-W and TCSV was achieved when chitosan treatment was accompanied with mixture of two PGPR (IN937a + SE34) or three PGPR strains (IN937a + SE34 + SE56). The results of this study proved that implementation of chitosan and PGPR could significantly restrict losses due to PRSV-W and TCSV in squash and tomato, in Florida and the United States.  相似文献   
102.
Long-term culture of human islets provides opportunity for improving results of islet transplantation. The techniques of long-term culture are reproducible and can result in improved function of the islet after transplantation into NOD-SCID mice. We have been able to cure streptozotocin-induced diabetes by islets cultured for more than 6 mo. Culture conditions play an important role in the success of the procedure. Culture success is dependent on the media type, additives, type of colloid or protein used, purity of the islets, and concentration and volume of the tissue. Cellular and structural changes occur over time in culture. These changes may explain the improved efficacy of the islet graft after short and intermediate culture periods. Further research into long-term culture of islets is necessary to fully explore the potential of the technique.  相似文献   
103.
Here, this work reports an innovative strategy for the synthesis of chemically robust metal–organic frameworks (MOFs), and applies them as catalysts for the electrocatalytic oxygen evolution reaction (OER). A bimetallic squarate-based MOF (Sq-MOF) with a zbr topology serves as an excellent platform for electrocatalytic OER owing to its open porous structure, high affinity toward water, and presence of catalytically active 1D metal hydroxide strips. By regulating the Ni2+ content in a bimetallic squarate MOF system, the electrochemical structural stability toward OER can be improved. The screening of various metal ratios demonstrates that Ni3Fe1 and Ni2Fe1 Sq- zbr -MOFs show the best performance for electrocatalytic OER in terms of catalytic activity and structural stability. Ni2Fe1 Sq- zbr -MOF shows a low overpotential of 230 mV (at 10 mA cm−2) and a small Tafel slope of 37.7 mV dec−1, with an excellent long-term electrochemical stability for the OER. Remarkably, these overpotential values of Ni2Fe1 Sq- zbr -MOF are comparable with those of the best-performing layered double hydroxide (LDH) systems and outperforms the commercially available noble-metal-based RuO2 catalyst for OER under identical operational conditions.  相似文献   
104.
The widespread use of silver in various forms raises concerns about its potential adverse effects. Silver nanoparticles (AgNPs) can enter the brain and subsequently induce neurotoxicity. As a source of diverse growth factors and for its cytoprotective properties, platelet-rich plasma (PRP) has received considerable attention in regenerative medicine. Our aim was to estimate the toxic effects of AgNPs on the rat brain and assess the possible protective effects of PRP against AgNPs induced neurotoxicity. A total of 40 adult male rats were divided into four groups (n = 10), namely the control, AgNPs, AgNPs+PRP, and auto-recovery groups. AgNPs were given intraperitoneally (i.p.) at a 10 mg/kg dose.bw daily for 28 days. PRP was given (a day after AgNPs treatment) i.p. at a dose of 0.5 mL/kg.bw twice weekly for 3 weeks. Rats in the auto-recovery group were left without treatment for 3 weeks after AgNP toxicity. Serum and brain tissue samples were collected for assessment of proinflammatory cytokines, oxidative stress markers, as well as the expression levels of apoptotic markers. Brain histopathological and immunohistochemistry examinations were done. AgNPs significantly increased oxidative stress markers and proinflammatory cytokines, decreased antioxidant defense markers, and induced apoptosis and histopathological brain injuries. However, PRP treatment restored brain oxidant/antioxidant balance, attenuated the inflammatory state, prevented apoptosis, and improved the brain histopathological lesions induced by AgNPs, with no significant improvements shown by auto-recovery group. Our data provided a novel protective effect for PRP against AgNPs-induced neurotoxicity due to its antioxidant, anti-inflammatory, and antiapoptotic effects.  相似文献   
105.
In the developing rat brain, the enzymatic formation of prostaglandin D2 from prostaglandin H2 increased 60-fold from day 12 of gestation to birth. The activity still rose gradually to the highest level (90 nmol/min/g wet tissue) at day 7 after birth. The activities of prostaglandin E2 and F2 alpha synthetases in rat brain were highest at gestational age 19 days (30 nmol/min/g wet tissue), respectively. The specific activity of NADP-dependent 15-hydroxy-prostaglandin D2 dehydrogenase in rat brain was highest at the earliest gestational age we examined (day 12 of gestation). The specific bindings of prostaglandin D2 and E2 to the crude mitochondrial fraction of rat brain were observed from day 16 of gestation and increased to day 7 after birth. Although the activities of the enzymes responsible for prostaglandin metabolism were unchanged postmaturationally, the maximal concentrations of the binding sites on the synaptic membrane for both prostaglandins D2 and E2 decreased with constant affinity to less than one-sixth with age from 1 week to 24 months after birth. These results indicate that prostaglandins may play important roles during maturation and aging in rat brain.  相似文献   
106.
Gene duplication leads to the formation of gene families, wherein purifying or neutral selection maintains the original gene function, while diversifying selection confers new functions onto duplicated genes. The B56 gene family is highly conserved; it is encoded by one gene in protists and fungi, and five genes in vertebrates. B56 regulates protein phosphatase 2A (PP2A), an abundant heterotrimeric serine/threonine phosphatase that functions as a tumor suppressor and consists of a scaffolding “A” and catalytic “C” subunit heterodimer bound to a regulatory “B” subunit. Individual regulatory B56 subunits confer disparate functions onto PP2A in various cell-cell signaling pathways. B56 proteins share a conserved central core domain, but have divergent N- and C-termini which play a role in isoform specificity. We carried out a nonsynonymous/synonymous substitution analysis to better understand the divergence of vertebrate B56 genes. When five B56 paralogs from ten vertebrate species were analyzed, the gene family displayed purifying selection; stronger purifying selection was revealed when individual B56 isoforms were analyzed separately. The B56 core experienced stronger purifying selection than the N- and C-termini, which correlates with the presence of several contacts between the core and the AC heterodimer. Indeed, the majority of the contact points that we analyzed between B56 and the AC heterodimer experienced strong purifying selection. B56 subfamilies showed distinct patterns of selection in their N- and C-termini. The C-terminus of the B56-1 subfamily and the N-terminus of the B56-2 subfamily exhibited strong purifying selection, suggesting that these termini carry out subfamily-specific functions, while the opposite termini exhibited diversifying selection and likely carry out isoform-specific functions. We also found reduced synonymous substitutions at the N- and C-termini when grouping B56 genes by species but not by isoform, suggesting species-specific codon bias may have a role in regulating B56 gene expression.  相似文献   
107.
This study was conducted in Date Palm Technology Company Limited, Shambat, Khartoum State. To evaluate performance of three types of evaporative cooling pads for greenhouses (celdek pads, straw pads and sliced wood pads), as compared to the conditions outside the greenhouses (control), for pads. Performance evaluation includes environmental parameters (temperature and relative humidity at 8 am, 1 pm and 6 pm) and crop parameters (length and stem diameter, leaves number and width, fruit length and diameter, fruit weight and dry matter and yield). The results obtained for the temperature at 8 am showed that there was no significant difference (0.05) inside the greenhouses, while a high significant difference between the conditions inside and outside of the greenhouses was found. Significant differences were found at 1 pm and 6 pm between all treatments as compared to the conditions outside the greenhouses, and the results obtained for relative humidity showed high significant differences at 8 am and 1 pm inside the greenhouses and between inside and outside the greenhouse, respectively, while there was no significant difference at 6 pm inside the greenhouses and between inside and outside the greenhouses. On the other hand, the results obtained for crop parameters showed that there were significant differences between all parameters inside the greenhouses and outside the greenhouses; however, the greenhouses with sliced wood pads gave the highest yield and the greenhouses with straw pads gave the least and conditions outside gave the lowest.This study indicated that the sliced wood pads are better than the other evaporative cooling pads.  相似文献   
108.
Breast cancer commonly metastasizes to bone where its growth depends on the action of bone-resorbing osteoclasts. We have previously shown that breast cancer cells secrete factors able to directly stimulate osteoclastogenesis from receptor activator of nuclear factor κB ligand (RANKL)-primed precursors and that transforming growth factor-β (TGFβ) plays a permissive role in this process. Now, we evaluate the signaling events triggered in osteoclast precursors by soluble factors produced by MDA-MB-231 human breast carcinoma cells. In mouse bone marrow cultures and RAW 264.7 murine monocytic cells, MDA-MB-231-derived factors increased osteoclast number, size, and nucleation. These factors failed to induce Smad2 phosphorylation, and short interfering RNAs against Smad4 did not affect their ability to induce osteoclastogenesis. In contrast, MDA-MB-231 factors induced phosphorylation of p38 and ERK1/2, and pharmacological inhibitors against p38 (SB203580) and MEK1/2 (PD98059) impeded the osteoclastogenic effects of cancer-derived factors. Neutralizing antibodies against TGFβ attenuated p38 activation, whereas activation of ERK1/2 was shortened in duration, but not decreased in amplitude. ERK1/2 phosphorylation induced by cancer-derived factors was blocked by MEK1/2 inhibitor, but not by Ras (manumycin A) or Raf (GW5074) inhibitors. Inhibition of protein kinase Cα using Gö6976 prevented both ERK1/2 phosphorylation and osteoclast formation in response to MDA-MB-231-derived factors. Using microspectrofluorimetry of fura-2-AM-loaded osteoclast precursors, we have found that cancer-derived factors, similar to RANKL, induced sustained oscillations in cytosolic free calcium. The calcium chelator BAPTA prevented calcium elevations and osteoclast formation in response to MDA-MB-231-derived factors. Thus, we have shown that breast cancer-derived factors induce osteoclastogenesis through the activation of calcium/protein kinase Cα and TGFβ-dependent ERK1/2 and p38 signaling pathways.  相似文献   
109.
Several microorganisms are known for their efficient anaerobic conversion of glycerol to 1,3-propanediol, with Clostridium diolis DSM 15410 as one of the better performers in terms of molar yield and volumetric productivity. However, this performance is still insufficient to compete with established chemical processes. Previous studies have shown that high concentrations of 1,3-propanediol, glycerol, and fermentation side products can limit the productivity of C. diolis DSM 15410. Here, we describe the use of genome shuffling for improved 1,3-propanediol fermentation by the strict anaerobe C. diolis DSM 15410. By using chemical mutagenesis, strains with superior substrate and product tolerance levels were isolated and higher product yields were obtained. These superior strains were then used for genome shuffling and selection for 1,3-propanediol and organic acid tolerance. After four rounds of genome shuffling and selection, significant improvements were observed, with one strain attaining a 1,3-propanediol volumetric yield of 85 g/liter. This result represents an 80% improvement compared to the yield from the parental wild-type strain.The use of biomass instead of petrochemical feedstock could facilitate the sustainable production of many chemicals, but this approach has proven economically feasible in only a few cases (4, 17, 20, 21). The microbial production of 1,3-propanediol (1,3-PD) provides an interesting case study because this monomer is used to produce several plastics, including the relatively new and highly versatile polytrimethylene terephthalate, which has significantly increased demand for 1,3-PD (12, 23, 24). Polytrimethylene terephthalate is currently produced from petrochemical feedstock in a process that involves the conversion of ethylene oxide into 3-hydroxypropionaldehyde by hydroformylation under high pressure and then further into 1,3-PD by hydrogenation using a nickel or rubidium catalyst (21).Several companies have investigated the sustainable production of 1,3-PD from biomass. For example, DuPont and Genencor transferred the relevant 1,3-PD biosynthetic genes from Klebsiella pneumonia into Escherichia coli and further modified carbohydrate metabolism and transport so that 1,3-PD could be synthesized from glucose (10, 11; M. Emptage, S. L. Haynie, L. A. Laffend, J. Pucci, and G. M. Whited, 2001, Patent Cooperation Treaty international application WO 2001/01/12833). Large-scale production of 1,3-PD by this approach is likely to be too expensive due to the high input costs of vitamin B12 and antibiotics, so the use of glycerol as an alternative feedstock has been investigated, although this strategy requires additional enzymes and a shift from aerobic to anaerobic conditions (15, 25, 30).Clostridium diolis DSM 15410 (formerly C. butyricum DSM 5431) can produce 1,3-PD from glycerol under anaerobic conditions and is therefore a desirable alternative to E. coli given the relative costs of industrial aerobic and anaerobic fermentation (6, 8, 9, 22). However, the efficiency of conversion is not yet high enough for an industrial process. The production of 1,3-PD by C. diolis is limited by inhibition from both substrates and products, as well as organic acids produced as fermentation by-products (13).Classical strain improvement has significantly increased 1,3-PD production, but this is a slow process and the mutations are predominantly neutral or detrimental (2). We have therefore approached the problem using genome shuffling, which is more efficient and reliable for engineering complex phenotypes, as demonstrated in several other examples of microbial strain development (16, 26, 31). Genome shuffling offers the advantages of accumulated beneficial mutations and the removal of unnecessary mutations due to simultaneous changes at different positions throughout the genome and, therefore, yields microbes of superior fitness (29). We applied both the classical approach and genome shuffling to C. diolis DSM 15410 to improve the production of 1,3-PD, which is a necessary prerequisite for the fermentation process. To our knowledge, this study is the first example of genome shuffling in a strictly anaerobic microorganism.  相似文献   
110.
Troxerutin, a natural flavonoid guards against oxidative stress and apoptosis with a high capability of passing through the blood‐brain barrier. Our aim was to investigate the role of troxerutin in experimentally induced retinal neurodegeneration by modulating the interferon‐gamma (IFNγ)‐extracellular signal‐regulated kinases 1/2 (ERK1/2)‐CCAAT enhancer‐binding protein β (C/EBP‐β) signaling pathway. Three groups of rats (10 each group) were included. Group I (control group), group II (rotenone treated group): the rats were injected subcutaneously with a single rotenone dosage of 3 mg/kg repeated every 48 hours for 60 days to trigger retinal neurodegeneration. Group III (troxerutin‐treated group): rats received troxerutin (150 mg/kg/day) by oral gavage 1 hour before rotenone administration. A real‐time polymerase chain reaction technique was applied to measure messenger RNA (mRNA) levels of retinal C/EBP‐β. Enzyme‐linked immunosorbent assay technique was utilized to assay tumor necrosis factor‐α (TNF‐α), IFNγ, and ERK1/2 levels. Finally, reactive oxygen species (ROS), as well as carbonylated protein (CP) levels, were assessed spectrophotometrically. Improved retinal neurodegeneration by downregulation of C/EBP‐β mRNA gene expression, also caused a significant reduction of TNF‐α, IFNγ, ERK1/2 as well as ROS and CP levels compared with the diseased group. These findings could hold promise for the usage of troxerutin as a protective agent against rotenone‐induced retinal neurodegeneration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号